
42

A Crowdsensing-based Cyber-physical System for Drone
Surveillance Using Random Finite Set Theory

CHAOQUN YANG, Zhejiang University, China

LI FENG, Macau University of Science and Technology, China

ZHIGUO SHI, Zhejiang University and Alibaba-Zhejiang University Joint Institute

of Frontier Technologies, China

RONGXING LU, University of New Brunswick, Canada

KIM-KWANG RAYMOND CHOO, University of Texas at San Antonio, USA

Given the popularity of drones for leisure, commercial, and government (e.g., military) usage, there is increas-

ing focus on drone regulation. For example, how can the city council or some government agency detect and

track drones more efficiently and effectively, say, in a city, to ensure that the drones are not engaged in unau-

thorized activities? Therefore, in this article, we propose a crowdsensing-based cyber-physical system for

drone surveillance. The proposed system, CSDrone, utilizes surveillance data captured and sent from citizens’

mobile devices (e.g., Android and iOS devices, as well as other image or video capturing devices) to facilitate

jointly drone detection and tracking. Our system uses random finite set (RFS) theory and RFS-based Bayesian

filter. We also evaluate CSDrone’s effectiveness in drone detection and tracking. The findings demonstrate

that in comparison to existing drone surveillance systems, CSDrone has a lower cost, and is more flexible and

scalable.
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1 INTRODUCTION

In recent years, the use of drones (also referred to as unmanned aerial vehicles (UAVs)) has in-
creased exponentially, as the applications of drones increase (e.g., commercial deliveries [4, 25],
agriculture [18, 33], search and rescue [24, 32], and traffic monitoring [34–36]). Similar to other
consumer technologies, such as driverless vehicles [13, 26], drones are a double-edged sword, in
the sense that it can be also abused for nefarious purposes, such as infringing of privacy [8, 22],
being used as an improvised explosive device [1, 15, 19], and smuggling of contraband, such as
illicit drugs [7, 11, 15]. There have also been real-world incidents involving drones in a number of
countries [1, 7, 19].

Hence, it is not surprising that both public and private sector organizations as well as the re-
search community are paying closer attention to drones from a number of perspectives [5, 10] (e.g.,
security, privacy, performance, regulation, and surveillance). For example, the French-German Re-
search Institute of Saint-Louis presented a system that combines acoustic arrays and optical senors
to enhance drone tracking performance [6]. By integrating multiple passive sensors, Shi et al. de-
signed a drone surveillance system (ADS-ZJU) for drone detection and localization [23]. Fu et al.
developed a software defined radio (SDR)-based prototype for drone detection [9]. DedDrone, a
German company, developed a platform (DroneTracker) to detect amateur drones via acoustic, RF,
and optimal sensors [3]. Combining both radar target detection and electro-optical classification,
Plextek Limited (an organization) proposed a counter-drone system (AUDS) to remotely detect,
track, and classify drones [2].

Existing systems, however, have a number of limitations, such as the following:

• High cost of equipment in terms of purchase, deployment, and maintenance. For
example, a large number of sensors generally need to be purchased and deployed in a spec-
ified surveillance region in advance. There are also ongoing maintenance costs.

• Limited scalability. Once a drone surveillance system is deployed, the scalability of the
surveillance region is limited unless more sensors are purchased and deployed.

• Limited generalization capability. Most existing drone surveillance systems are de-
signed for specific drones or scenarios [8]. Thus, this limits their applications to other types
of drones or scenarios.

• High radiant power. Drone surveillance systems that use radars may not be permitted to
be deployed in urban areas due to high radiant power.

Therefore, to mitigate the above limitations, in this article, we propose a drone surveillance
system designed to be low cost, flexible, and scalable. Unlike existing drone surveillance systems
that are mostly physical system-based, the proposed system (hereafter referred to as CSDrone)
combines physical, information, and communication entities. In other words, CSDrone is a typical
cyber-physical system. Specifically, in CSDrone, we utilize crowdsensing to efficiently collect data
via mobile devices such as Android and iOS devices [16] see Figure 1. We also use the random
finite set (RFS) theory [17], a powerful technique for data analytics and data fusion, in CSDrone
to analyze the massive data in the system (acquired by and sent from citizen’s mobile devices and
other image/video capturing devices) to detect and track drones.
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Fig. 1. Detecting drones via smartphones in an urban area: A potential scenario.

A crowdsourcing approach allows us to tap into previously non-utilized sources, such as users’
mobile devices, without incurring expensive equipment setup, deployment, and maintenance. Such
devices are capable of capturing images and videos that can be used to facilitate drone detection
and tracking, for example, due to their in-built GPS receivers, acoustic sensors, and WiFi modules.
For example, by using the fast Fourier transform algorithm [29] to analyze the received acoustic
signals from the acoustic sensors and using the generalized cross-correlation algorithm [12] to cal-
culate signals’ time difference of arrival, mobile devices can obtain the detection and the direction
of arrival (DOA) results of drones.

The question then is, “How can we motivate or encourage citizen participation, for example,
to contribute their acquired images or videos, particularly in a privacy-sensitive society?” Incen-
tive mechanism to encourage mobile users is not necessarily financial, as citizens have a vested
interest for the city they live or work in to remain safe and free from terrorist activities. The data
contributed by these users can then be fused with other information to more efficiently and effec-
tively detect and track drones. One such example scenario is presented in Figure 2. Specifically,
this scenario is in an urban area setting, where a group of mobile device users are in the area of
interest who can then opportunistically contribute to the drone detection and tracking efforts.

In summary, the key contribution of this article is the proposed three-layer cyber-physical
system utilizing crowdsensing to facilitate drone surveillance. At the time of this research, this
is the first crowdsensing-based drone surveillance system presented in the literature. Specifically,
in the system, we utilize RFS theory, where RFS-based Bayesian filter and its approximation is
used to help us achieve drone detection and tracking by using the RFS-based Bayesian filter and
its approximation.

Section 2 briefly describe the relevant background materials. In Sections 3 and 4, we present
the proposed architecture and the underpinning RFS-based formulation. In Section 5, we present
the iterative RFS-based Bayesian filter and its particle approximation, which are used for drone
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Fig. 2. CSDrone architecture.

detection and tracking. Section 6 presents the evaluation findings, and the last section concludes
the article.

2 PRELIMINARIES

Prior to introducing the basic concepts in RFS theory, we will now describe the notations and
definitions used in the remainder of this article.

Lower case letters denote scalars, and bold lower case letters denote vectors. We use bold capital
letters to represent matrices, and bold Greek letters to represent RFSs. Also, XT denotes the trans-
pose of matrix X ,N (a,b) is the Gaussian distribution with mean a and covariance b, andU (a,b)
is the uniform distributed between a and b.

A random finite set can be taken as a random variable, whose values are taken as unordered
finite sets [20]. The obvious differences between a random finite set and a random vector [27, 30]
are as follows:

(1) The number of elements in a random finite set is random; and
(2) The elements themselves are random and unordered.

Let us take the detection set of a radar’s detector as an example, where zi and
Z denote detection and the detection set, respectively. Then, Z may be taken from
{∅}, {z1}, {z1, z2}, . . . , {z1, . . . , zm }, . . .. If Z is a RFS, then bothm and zi are random.

For RFS Ω = {x1,x2, . . . ,xn }, its set p.d.f. is defined as [17]

f (Ω) = f ({x1,x2, . . . ,xn })
= n!ρ (n)pn (x1,x2, . . . ,xn ), (1)

where |Ω | = n is the cardinality (the number of elements) of the RFS, ρ (n) is the distribution of
the number of elements, and pn (x1,x2, . . . ,xn ) is the family of symmetric joint distributions of
x1,x2, . . . ,xn [20]. Taking a Poisson RFS Ω as an example, the distribution of the number of ele-
ments is also Poisson; that is,

ρ (n) =
e−λλn

n!
,n = 0, 1, 2, . . . . (2)
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Meanwhile, the elements of Ω are independent identically distributed according to p.d.f. p (x ).
Then, we have

pn (x1,x2, . . . ,xn ) =
∏
x ∈Ω

p (x ). (3)

According to Equation (1), it follows that

f (Ω) = n!
e−λλn

n!

∏
x ∈Ω

p (x ) (4)

= e−λ
∏
x ∈Ω

λp (x ). (5)

For a continuous random variable, the integral of its p.d.f. is its cumulative distribution function
(c.d.f.). Similarity, for a RFS, the integral of the set p.d.f. f (Ω) also exists, which is defined as∫

f (Ω)δΩ = f (∅) +
∞∑

n=1

1

n!

∫
f ({x1, . . . ,xn })dx1, . . . ,dxn . (6)

The belief function of a RFS Ω, βΩ (Ψ), is similar to the c.d.f. of a random variable. βΩ (Ψ) is
defined as

βΩ (Ψ) = Pr (Ω ∈ Ψ)

=

∫
Ψ
f (Ω)δΩ. (7)

For a RFS, its belief function is as important as its set p.d.f., because both totally capture the statis-
tical characteristic of the RFS. In Section 5, we will present how to obtain the set p.d.f. of an RFS
according to Equations (6) and (7).

3 PROPOSED CSDRONE SYSTEM ARCHITECTURE

In this section, we will introduce the architecture of our proposed CSDrone.
As illustrated in Figure 2, CSDrone consists of a three-layer mobile-fog-cloud hierarchy. The mo-

bile layer consists of a (large) number of geo-distributed mobile users, but are physically within
the region of interest. In other words, these users will contribute and regularly receive the broad-
cast tasks of drone detection from the cloud center. To encourage user participation and ensure
the authenticity/quality of user reports, we need to sufficiently reward these users. While typical
rewards are usually financially related (e.g., cash and credit), rewards can also be in other forms
such as peer recognition (similar to the Publons1 website used to encourage scholars to participate
in peer review of manuscripts and showcase their peer review record).

After performing a cost-benefit analysis (i.e., analyzing the tradeoff between the reward and
his/her current agenda), the user will decide to accept or decline the tasks. Usually, the user’s
agenda involves numerous subjective or objective factors, such as his/her emotion, location, work-
ing state and so on.

Once the user accepts the task, he/she will run the CSDrone mobile application (app). There are
four main functions of the CSDrone app:

(1) Continuously scan the sampled signals from the built-in sensors, such as acoustic sensors
and cameras on the user’s device;

(2) Analyze the sampled signals, obtain detection results and calculate DOA results (if de-
tected);

1https://publons.com/home/.
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(3) Reports detection and DOA results to the cloud center; and
(4) Invoke the user’s GPS data in the user’s device.

The fog layer consists of several fog servers, which are deployed in the region of interest (i.e.,
surveillance region). The aim of the fog layer is to build a bridge between the cloud center and
the user devices that do not have sufficient computational capacity to compute the detection and
DOA results.

The cloud center is the core of CSDrone, which has the following functions:

(1) Broadcast tasks of drone detection;
(2) Design appropriate incentive mechanisms and privacy-preserving mechanisms;
(3) Integrate and fuse reported results from mobile users and fog servers;
(4) Obtain global detection and operate drone tracking (if required); and
(5) Output detection and tracking results to the relevant stakeholder.

Compared with existing surveillance systems (e.g., ADS-ZJU [23], DroneTracker [3], AUDS [2]),
CSDrone has the following advantages:

• Lower cost. Due to the bring your own device (BYOD) setting, there is no cost required to
acquire, install and maintain the sensors to collect data. However, there will be a need to
acquire, install and maintain fog servers should they be deployed. Such servers are still a
cheaper option.

• More flexible, extensive, and ubiquitous surveillance coverage. By encouraging more
users to participate in the tasks, the surveillance coverage will be more flexible and more
extensive. Meanwhile, the proliferation of mobile devices also makes the surveillance cov-
erage ubiquitous and scalable.

• More surveillance data. Massive data can be user-contributed, particularly at crowded
places and during large scale events such as a concert, a sport event, and so on [8]. There
may also be duplicated data, and hence this also raises the need for data deduplication
efforts.

• More resilience and robust to sensor fault. The redundancy of many more sources of
data significantly increases the resilience and robustness to false data injection and sensor
failure.

• No radiant power. Safer for human health.

However, due to the utilization of crowdsensing technique, CSDrone also faces the following
open challenges:

• Formulation for user reporting scheme. Due to the randomness of human mobility, the
varying number and the time-varying location of user device, it may be challenging to
accurately formulate a reporting scheme.

• Data fusion for a large source of data can be challenging, particularly if we also require the
analysis results to be available in real-time.

• A trade-off between incentive and privacy-preserving mechanisms. When accepting the
tasks, participants consume their resources (e.g., time and device battery life) and their pri-
vacy (e.g., GPS data) may also be compromised. Therefore, it is necessary to design appro-
priate incentive mechanisms to compensate for participation, without compromising their
privacy.

• Real-time implementation of detection and DOA estimation algorithms on mobile platforms
can be challenging due to the large amount of data and constant changing nature of events.
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Fig. 3. An example of the surveillance region.

In the following, we focus on the first two challenges. Specifically, we utilize the RFS theory to
accurately formulate CSDrone including drone dynamics, participant dynamics and device report-
ing scheme. Further, we focus on dealing with the challenge in drone detection and tracking by
fusing all devices’ reports.

4 RFS-BASED SYSTEM FORMULATION

In this section, we use the RFS theory to formulate three main elements in CSDrone, namely, drone
dynamics, participant dynamics, and device reporting scheme (see Sections 4.1–4.3).

4.1 Drone Dynamics

For simplicity, let us consider a scenario where no more than one drone exists in a two-
dimensional surveillance region. The state vector of the drone at time step k is denoted as
xk = [xk , ẋk , yk , ẏk ]T , where (xk ,yk ) and (ẋk , ẏk ) represent the drone’s position and velocity
at time step k , respectively. The following assumptions about the drone dynamics are made:

A1: The Markov transition density of the drone state is denoted as fk+1 |k (xk+1 |xk ). For instance,
if

xk+1 = Fxk +vk (8)

holds true, where vk is spatially and temporally white Gaussian noise that follows N (0,R), then
fk+1 |k (xk+1 |xk ) = N (Fxk ,R).

A2: If the drone exists in the surveillance region at time step k , then it has a probability ps of
remaining in the surveillance region at time step k + 1.

A3: If the drone is out of the surveillance region at time step k , then it has a probability pr of
appearing in the surveillance region. The initial state vector b when it appears in the surveillance
region is assumed to follow a p.d.f. r (b). In other words, r (b) is the p.d.f. of the drone’s state
when the drone first appears in the surveillance region. For example, consider the surveillance
region as shown in Figure 3. Let us assume that r (b) = U (a,c ) where a = [−150, 2,−150, 2]T ,c =
[150, 3, 150, 3]T . Then, both initial x and y positions of the drone follow the uniform distribution
between −150 and 150. Thus, both initial x velocity and y velocity of the drone follow the uniform
distribution between 2 and 3.
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Now, we formulate the drone dynamics at time step k − 1 by an RFS Σk−1. It is straightforward
that Σk−1 only exists in two possible cases, i.e., Σk−1 = {xk−1} or Σk−1 = {∅}. Accordingly, given
Σk−1 at time step k , the RFS-based drone dynamics at time step k can be formulated as

Σk =

{
{xk } ∩ ∅ps , if Σk−1 = {xk−1},
{b} ∩ ∅pr , if Σk−1 = ∅,

(9)

where ∅p is a discrete random set whose probability follows [17]

Pr (∅p = Ω) =
⎧⎪⎪⎨⎪⎪⎩

1 − p, if Ω is ∅,
p, if Ω is a singleton set ,
0, if otherwise.

(10)

Let m(k ) denotes the cardinality of Σk , and it is straightforward to know that m(k ) can only take
values from {0, 1}.

4.2 Participant Dynamics

To achieve drone tracking, the cloud center needs to invoke each participant’s GPS data. Let

(ξi,k , ζi,k ) and (ξ̇i,k , ζ̇i,k ) represent the GPS location and velocity of the ith participant user, respec-

tively, and let yi,k = [ξi,k , ξ̇i,k , ζi,k , ζ̇i,k ]T denote the GPS-based dynamics of the ith participant
user. We should formulate the dynamics of the device carried by participants. However, since the
devices are always with the users, we assume that they share the same dynamics for simplicity.

Then, we use the following RFS to denote the collected GPS data from all participants at time
step k ,

Θk = {yi,k ,y2,k , . . . ,yn (k ),k }, (11)

where n(k ) is the number of participants at time step k .

4.3 Device Reporting Scheme

If the user accepts the tasks, then he/she will run the CSDrone app. Upon confirming drone detec-
tion, the CSDrone app will run the DOA estimation algorithm and report the estimated DOA to
the cloud center during each time step. Here, we emphasize that the drone detection may originate
from a drone or a false alarm. If nothing is detected, then the CSDrone app will also report this to
the cloud center during this time step. Therefore, each report either contains one estimated DOA,
or is the report of “no detection.”

Let an RFS Φi,k represents the report of the ith participant user’s smartphone at time stepk , then
Φi,k = {θi,k } means that the reported DOA estimated by this device, while Φi,k = {∅} means the
report of “no detection.” Note that the reports of all participants’ devices are mutually independent
at time step k , then these reports can be formulated by the following RFS:

Φk = Φ1,k ∪ Φ2,k ∪ · · · ∪ Φn (k ),k . (12)

Remark: From the cloud center’s perspective, we seek to detect the drone and estimate its state
xk (if detected), from a sequence of reports Φ1:k and GPS data Θ1:k . Here, Φ1:k ≡ Φ1, . . . ,Φk is the
sequence of all reports until time step k , and Θ1:k ≡ Θ1, . . . ,Θk is the sequence of all participants’
GPS data until time step k . Since Equation (9) faithfully encapsulates the information in the drone
dynamics including the number of drones and the drone’s states (if detected), our goal equates to
estimating Σk from a sequence of reports Φ1:k and GPS data Θ1:k .
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5 DRONE DETECTION AND TRACKING

5.1 RFS-based Bayesian Filter

Let σk |k−1 (Σk |Σk−1) and ϕk (Φk |Σk ,Θk ) denote the set p.d.f. of Equations (9) and (12), respectively.
Then, the posterior set p.d.f of Σk , i.e., πk |k (Σk |Φ1:k ,Θ1:k ), can be iteratively estimated by the
RFS-based Bayesian filter, which contains the following two steps:

Prediction step: Given the posterior set p.d.f. of Σk−1, i.e., πk−1 |k−1 (Σk−1 |Φ1:k−1,Θ1:k−1) at time
step k − 1, the predicted set p.d.f. at time step k is given as

πk |k−1 (Σk |Φ1:k−1,Θ1:k−1) =

∫
σk |k−1 (Σk |Σk−1)πk−1 |k−1 (Σk−1 |Φ1:k−1,Θ1:k−1)δΣk−1. (13)

Update step: On receipt of the new reports set Φk and corresponding Θk , the posterior p.d.f. at
time step k is given as

πk |k (Σk |Φ1:k ,Θ1:k ) =
ϕk (Φk |Σk ,Θk )πk |k−1 (Σk |Φ1:k−1,Θ1:k−1)∫
ϕk (Φk |Σ,Θk )πk |k−1 (Σ|Φ1:k−1,Θ1:k−1)δΣ

. (14)

According to Equations (13) and (14), once we obtain σk |k−1 (Σk |Σk−1) and ϕk (Φk |Σk ,Θk ), we
can iteratively estimate the posterior set p.d.f. πk |k (Σk |Φ1:k ,Θ1:k ) over time. Therefore, the main
challenge lies in the derivation of σk |k−1 (Σk |Σk−1) and ϕk (Φk |Σk ,Θk ).

5.2 Set p.d.f. of Drone Dynamics

Now, we will present the derivation of σk |k−1 (Σk |Σk−1). Let us begin with Σk−1 = ∅, and the belief
function of Equation (9) can be written as

βk |k−1 (Ω |∅) = Pr {Σk ⊆ Ω |∅} (15)

= (1 − pr + pr · Pr
{{b} ⊆ Ω |∅}

= 1 − pr + pr

∫
Ω
r (b)db .

It follows that

σk |k−1 (Σk |∅) =
⎧⎪⎪⎨⎪⎪⎩

1 − pr , if Σk = ∅,
pr · r (b), if Σk � ∅ ,
0, if otherwise.

(16)

Similarly, if Σk−1 � ∅, then the belief function and set p.d.f. of Equation (9) are as follows:

βk |k−1 (Ω |{xk−1}) = Pr {Σk ⊆ Ω |{xk−1}} (17)

= (1 − ps ) + ps · Pr {{xk } ⊆ Ω |{xk−1}}

= 1 − ps + ps

∫
Ω
fk |k−1 (xk |xk−1)dx k

,

σk |k−1 (Σk |{xk−1}) =
⎧⎪⎪⎨⎪⎪⎩

1 − ps , if Σk = ∅,
ps · fk |k−1 (xk |xk−1), if Σk � ∅ ,
0, if otherwise.

(18)

5.3 Set p.d.f. of Smartphones’ Report Scheme

Now, we will present the derivation of ϕk (Φk |Σk ,Θk ). Let us begin with the investigation of Φi,k .
Note that Φi,k = {∅} when both the following two conditions are simultaneously satisfied:

(1) No drone is detected (if the drone exists); and
(2) No false alarm happens.
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Fig. 4. Bearing measurement model of the ith participant user.

Thus, we have

Pr (Φi,k = ∅) = 1 − qi = (1 − pi,f ) (1 − pi,d ), (19)

where pi,f and pi,d are the false alarm probability and the detection probability of the ith partici-
pant user, respectively. For simplicity, assume that pi,f = pf and pi,d = pd , then qi = q.

First, consider a special case in which Σk = ∅, then q = pf and

Φi,k = {ϑ } ∩ ∅pf , (20)

where ϑ ∈ [−π/2,π/2] is a false alarm angle that follows a p.d.f. κ (ϑ ). Similar to Equations (15)
and (16), the belief function and set p.d.f. of Equation (20) are as follows:

βi,k (Ω |∅,Θk ) = Pr {Φi,k ⊆ Ω |∅,Θk } (21)

= 1 − pf + pf

∫
Ω
κ (ϑ )dϑ ,

ϕi,k (Φi,k |∅,Θk ) =
⎧⎪⎪⎨⎪⎪⎩

1 − pf , if Φi,k = ∅,
pf κ (ϑ ), if Φi,k � ∅ ,
0, if otherwise.

(22)

Second, consider a more general case in which Σk � ∅, then

Pr (Φi,k = Ω) =
⎧⎪⎪⎨⎪⎪⎩

1 − q, if Ω = ∅,
pf , if Ω = {ϑ },
pd (1 − pf ), if Ω = {θi,k }.

(23)

As shown in Figure 4, θi,k can be obtained from the following bearing measurement model of the
ith participant user

θi,k = arctan

(
yk − ζi,k

xk − ξi,k

)
+wi,k , (24)

where wi,k is spatially and temporally white Gaussian noise that followsN (0,Qi ). For simplicity,
we denote Equation (24) by li,k (θi,k |xk ,yi,k ).
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The belief function of Φi,k under the case Σk � ∅ is

βi,k (Ω |{xk },Θk ) = Pr (Φi,k ⊆ Ω |{xk },Θk )

= 1 − q + pf

∫
Ω
κ (ϑ )dϑ + (1 − pf )pd

∫
Ω
li,k (θi,k |xk ,yk )dθi,k

. (25)

Therefore, the set p.d.f. of Φi,k under the case Σk � ∅ can be expressed as

ϕi,k (Φi,k |{xk },Θk ) =
⎧⎪⎪⎨⎪⎪⎩

1 − q, if Φi,k = ∅,
λ(ϑ ,θi,k ), if Φi,k � ∅ ,
0, if otherwise,

(26)

where

λ(ϑ ,θi,k ) = pf κ (ϑ ) + (1 − pf )pdli,k (θi,k |xk ,yk ). (27)

According to Equations (22) and (26), (27), if Σk = ∅ and |Φk | = j, then the set p.d.f. of ϕk can be
described as

ϕk (Φk |Σk ,Θk ) =
nk !

(nk − j )!
(pf κ (ϑ )) j (1 − pf ) (nk−j ), (28)

where j = 0, 1, . . . ,nk . However, if |Φk | = j, and Σk � ∅, then

ϕk (Φk |Σk ,Θk ) = q j (1 − q) (nk−j )
∑

1≤i1�· · ·�i j ≤nk

λ(ϑ ,θi1,k ) · · · λ(ϑ ,θi j ,k ). (29)

We refer readers to the Appendix for the proofs of Equations (28) and (29).

5.4 Particle Approximation

By substituting Equations (16), (18), (22) and (28), (29) into the RFS-based Bayesian filter (see Equa-
tions (13) and (14)), the posterior p.d.f. πk |k (Σk |Φ1:k ,Θ1:k ) can be recursively updated in time. Un-
fortunately, due to the involved multiple integrals, the above RFS-based Bayesian filter usually
suffers high computational complexity. As an alternative way, it can be approximated by a particle
method.

Assume that the posterior set p.d.f. πk−1 |k−1 (Σk−1 |Φ1:k−1,Θ1:k ) can be approximated by a set of
particles as

πk−1 |k−1 (Σk−1 |Φ1:k−1,Θ1:k ) ≈
L∑

i=1

w (i )
k−1

δ
Σ(i )

k−1

(Σk−1), (30)

where Σ(i )
k−1

is the ith particle,w (i )
k−1

is the weight corresponding to Σ(i )
k−1

andw (i )
k−1
≥ 0,

∑L
1 w

(i )
k−1
= 1,

L is the number of particles, δ
Σ(i )

k−1

(Σk−1) is the set-valued version of the Dirac delta function [20].

Then, the particles {Σ(i )
k
}L1 can be randomly generated as

Σ(i )
k
∼ σk |k−1

(
· |Σ(i )

k−1

)
. (31)

Using importance sampling [14] and Equation (14), the weight associated with the ith particle

Σ(i )
k

is updated as

w (i )
k
=
ϕk (Φk |Σ(i )

k
,Θk )σk |k−1 (Σ(i )

k
|Σ(i )

k−1
)

ηk (Σ(i )
k
|Σ(i )

k−1
,Φk )

w (i )
k−1
, (32)

where ηk (·|Σ(i )
k−1
,Φk ) is the importance sampling density [14]. For the ease of calculation, a naive

choice of importance sampling density is ηk (·|Σ(i )
k−1
,Φk ) = σk |k−1 (·|Σ(i )

k−1
) [28]. Then, Equation (32)

is simplified to

w (i )
k
= ϕk

(
Φk |Σ(i )

k
,Θk

)
w (i )

k−1
. (33)
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Then, we have

πk |k (Σk |Φ1:k ,Θ1:k ) ≈
L∑

i=1

w (i )
k
δ

Σ(i )
k

(Σk ), (34)

and

πk |k (m(k ) |Φ1:k ,Θ1:k ) ≈
∑

i : |Σ(i )
k
|=m (k )

w (i )
k
, (35)

where πk |k (m(k ) |Φ1:k ,Θk ) is the cardinality distribution of πk |k (Σk |Φ1:k ,Θ1:k ).
Remark: Based on Equation (35), drone detection can be realized by calculating the expected a

posteriori (EAP) or maximum a posteriori (MLE) estimator ofm(k ). For example, the fact that the
EAP estimator ofm(k ) equals to 1 implies that CSDrone detects the drone. Then, the drone’s state
can be extracted by using cluster technique on these particles.

Algorithm 1 summarizes the particle approximation of the above RFS-based Bayesian filter. To
reduce the problem of particle degeneracy, the step of resampling is added.

ALGORITHM 1: Particle approximation of the Bayesian RFS filter

Initialize: L, {Σ(i )
0 ,w

(i )
0 }

L
i=1;

for k = 1, 2, . . . do

Procedure 1: Sampling;

for i = 1, . . . ,L do

Generate Σ
(i )
k
∼ σk |k−1 (·|Σ(i )

k−1
);

Compute w
(i )
k
= ϕk (Φk |Σ

(i )
k
,Θk )w

(i )
k−1

;

end

Procedure 2: Resampling;

Compute
∑L

j=1w
(i )
k

;

for i = 1, . . . ,L do

Normalize weight w
(i )
k
= w

(i )
k
/
∑L

j=1w
(i )
k

;

end

Obtain {Σ̃(i )
L , w̃

(i )
k
}ki=1 by applying a resampling algorithm on {Σ(i )

k
,w

(i )
k
}Li=1;

end

6 EVALUATION

In this section, we present extensive numerical experiments to evaluate CSDrone’s drone detection
and tracking performance.

6.1 Linear Case with Static Users

Consider a two-dimensional case with no more than one drone observed by three mobile users
over the region [−150, 150] × [−150, 150]. The drone dynamics follow Equation (8), and

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (36)
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Fig. 5. Drone detection results (linear case with static users).

R = 0.25

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (37)

Assume that the drone enters the region at time step 5 and escapes from this region at time step
40. The probability of survival and the probability of appearing are set to ps = 0.98 and pr = 0.01,
respectively. The initial state vector b follows r (b) = U (a,c ), where a = [−150, 2,−150, 2]T ,c =
[150, 2, 150, 2]T . Let us begin with a simple case where three users keep static and participate
the tasks all the time. Their initial positions are [50, 0]T , [0, 50]T , and [60, 100]T , respectively, and
their detection rate and false alarm rate arepd = 0.98 andpf = 0.05, respectively. The false alarm ϑ
follows κ (ϑ ) = U (−π/2,π/2). The measurement noises of each users are Q1 = Q2 = Q3 = π/180.

To jointly evaluate the detection and estimation performance, we introduced optimal subpattern

assignment (OSPA) distance. For x ,y, let dp
(c ) (x ,y) = min(c, | |x −y | |), and Πk denote the set of

permutations on {1, 2, . . . ,k } for any positive integer k . Then, for p ≥ 1, c > 0, Φ = {x1, . . . ,xm }
and Ψ = {y1, . . . ,yn }, the OSPA distance between Φ and Ψ is defined as follows [21, 31]:

d̄p
(c )

(Φ,Ψ) = �


1

n
�


min
π ∈Πn

m∑
i=1

d (c ) (x i ,yπ (i ) )
p + cp (n −m)�

�
�
�

1
p

, (38)

and ifm > n, d̄p
(c )

(Φ,Ψ) = d̄p
(c )

(Ψ,Φ), and d̄p
(c )

(Φ,Ψ) = d̄p
(c )

(Ψ,Φ) = 0 ifm = n = 0. In the fol-
lowing simulations, c = 300 and p = 1 are set, the total number of particles is set to 2,048, and 100
Monte Carlo trials are operated.

In Figure 5, we present the drone detection results. Except for the detection result at time step
5, drone number has been accurately estimated at each time step. Figure 6 presents the estimation
results of drone trajectories. Triangle symbols represent the coordinates of participant users. It
can be seen that the trajectories of the drone are accurately estimated. As Figure 7 shows, except
for the OSPA distance at time step 5, the OSPA distances during all time steps are very small. The
reason for the over-high OSPA distance at time step 5 is the incorrect estimated drone number.
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Fig. 6. Estimation results of drone trajectories (linear case with static users).

Fig. 7. OSPA distance (linear case with static users).

6.2 Linear Case with Mobile Users

Let consider a more complex case where each user has dynamics as Section 4.2 states. For i = 1, 2, 3,
assume that each user’s dynamics follow

yi,k = Ayi,k−1 +vk , (39)

wherevk ∼ N (0,G ),

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (40)
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Fig. 8. Drone detection results (linear case with mobile users).

Fig. 9. Estimation results of drone trajectories (linear case with mobile users).

and

G = 0.25

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (41)

Their initial states are [50, 0.5, 0, 0.5]T , [0, 1, 50, 0.5]T , and [60, 0.5, 100,−0.5]T , respectively. The
first user participants the tasks all the time, while the second user and the third user participate
the tasks during time steps 1–30 and 20–35, respectively.

The jointly detection and tracking results are presented in Figures 8–10.
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Fig. 10. OSPA distance (linear case with mobile users).

Fig. 11. The drone detection results (nonlinear case with mobile users).

Similar to the results of the linear case with static users, both the number and trajectories of the
drone are simultaneously estimated with high accuracy. Note that there only exists one user who
participates the tasks during time steps 36–45, while the results are still acceptable.

6.3 Nonlinear Case with Mobile Users

Consider the drone dynamics follow the nonlinear equations

xk = F (ωk−1)xk−1 +vk , (42)

ωk = ωk−1 + μk , (43)
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Fig. 12. The estimation results of drone trajectories (nonlinear case with mobile users).

Fig. 13. The OSPA distance (nonlinear case with mobile users).

wherevk ∼ N (0,G ), μk ∼ N (0, (π/180)2) and

F (ω) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
sin(ω )

ω
0 − 1−cos ω

ω

0 cosω 0 − sinω

0 1−cos ω
ω

1 sin(ω )
ω

0 sinω 0 cosω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (44)

The remaining settings are the same as those in the above cases.
The results are presented in Figures 11–13. In comparison with the OSPA distances in Figures 7

and 10, the OSPA distance in Figure 13 becomes much larger, which implies that the results of this
case are worse than that of the above linear cases. However, from Figures 11 and 12, it can be seen
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Fig. 14. Drone detection results (linear case with two drones and mobile users).

Fig. 15. Estimation results of drone trajectories (linear case with two drones and mobile users).

that both the number and the trajectories of the drone are still accurately estimated most of the
time. Therefore, the proposed system is suitable for the nonlinear case.

6.4 Linear Case with Two Drones and Mobile Users

Let us assume that the first drone enters the region at time step 5 and escapes from the region at
time step 20, and the second drone enters the region at time step 25 and escapes from the region at
time step 45. The above assumptions still satisfy drone dynamics in Section 4.1, since there is no
more than one drone that exists simultaneously. The initial state vectors of both drones both follow
r (b) = U (a,c ), where a = [−150, 2,−150, 2]T , c = [150, 2, 150, 2]T . The dynamics of both drones
follow Equations (8), (36), and (37). The first user participates in the tasks all the time, while the
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Fig. 16. OSPA distance (linear case with two drones and mobile users).

Fig. 17. The OSPA distance (accuracy versus the number of mobile users).

second user and the third user participate in the tasks during time steps 1–30 and steps 20–45,
respectively. The remaining settings are the same as those in Section 6.2.

The results are presented in Figures 14–16. It can be observed that CSDrone needs several time
steps to discover drones entering the region. However, both the number and the trajectories are
accurately estimated after those drones are detected.

6.5 Accuracy versus the Number of Mobile Users

In this case, we investigate the accuracy of joint detection and estimation when the number of
mobile users is different. We assume that mobile users remain static and participate in the tasks
all the time. To maximally alleviate the effect caused by their positions, let us assume that their
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positions are randomly generated in the region. The number of mobile users increases from 3 to
10. The remaining settings are the same as those in Section 6.1.

One hundred Monte Carlo trials are run and the average OSPA distance is presented in Figure 17.
One can easily observe that as the number of mobile users increases, so does the accuracy of joint
detection and estimation.

7 CONCLUSION

Drones (UAVs) are likely to be more widely used in our society, both autocratic and liberal, for the
foreseeable future. This is evidenced by the increasing interest in drone surveillance systems.

In this article, we proposed a cyber-physical system for drone surveillance. Using crowdsourced
user-contributed data, the proposed system significantly reduces the operation costs, particularly
in comparison to existing competing systems. To ensure efficient and effective drone detection
and tracking, the proposed system utilized the RFS theory and RFS-based Bayesian filter. Using
extensive numerical results, we demonstrated the utility of the proposed system.

Future research includes collaborating with an organization, such as the authors’ institutions
police department (e.g., UTSA Police Department) or a city council to deploy the system. This
will allow us to evaluate its utility, performance, and scalability in a real-world environment (e.g.,
its efficiency and effectiveness in detecting and tracking multiple drones in real-time), as well as
identifying any limitations that can be addressed in subsequent versions.

APPENDIX

A THE PROOF OF EQUATIONS (28) AND (29)

Proof. Based on the set p.d.f. of Φi,k , i.e., ϕi,k (Φi,k |Σk ,Θk ), and

Φk = Φ1,k ∪ Φ2,k ∪ · · · ∪ Φn (k ),k , (45)

ϕk (Φk |Σk ,Θk ) can be obtained by using RFS convolution formula (see chapter 11 in Refer-
ence [17]). However, here we present a more straightforward way to deduce ϕk (Φk |Σk ,Θk ).

Let us begin with the case in which Σk is empty. If Φk also is empty, then it is straightforward
that

Φi,k = ∅, i = 1, 2, . . . ,n(k ). (46)

Therefore,
ϕk (∅|∅,Θk ) = (1 − pf )n (k ) . (47)

If |Φk | = j, then we need to assign j of n(k ) reports to false alarms and n(k ) − j reports to “no
detection.” Thus,

ϕk (Φk |∅,Θk ) =
nk !

(nk − j )!
(pf κ (ϑ )) j (1 − pf ) (nk−j ) . (48)

Now, we are in a position to deduce ϕk (Φk |Σk ,Θk ) when Σk is not an empty set. If Φk still is
empty, then clearly Equation (46) holds true, and

ϕk (∅|Σk ,Θk ) = (1 − q)n (k ) .

If |Φk | = 1, then we need to assign 1 of n(k ) reports to detection (true detection or false alarms)
and n(k ) − 1 reports to “no detection.” Similar to Equation (48),

ϕk (Φk |Σk ,Θk ) = q(1 − q)nk−1
(
λ(ϑ ,θ1,k ) + · · · + λ(ϑ ,θnk ,k )

)
.

If |Φk | = 2, then we need to assign 2 of n(k ) reports to detection (true detection and false alarms)
and n(k ) − 2 reports to no detection. In a similar manner, we have

ϕk (Φk |Σk ,Θk ) = q2 (1 − q)nk−2
∑

1≤i1�· · ·�i j ≤nk

λ(ϑ ,θi1,k )λ(ϑ ,θi2,k ).
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Thus, if |Φk | = j, then we have

ϕk (Φk |Σk ,Θk ) = q j (1 − q) (nk−j )
∑

1≤i1�· · ·�i j ≤nk

λ(ϑ ,θi1,k ) · · · λ(ϑ ,θi j ,k ).

This completes the proof. �
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